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Quantum Effects of a Nondissipative M esoscopic
Capacitance Coupling Circuit in a Displaced Squeezed
Fock State

Ji-Suo Wang,*?2 Tang-Kun Liu,?® and Ming-Sheng Zhan?
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Starting from the classical equation of motion for a mesoscopic capacitance
coupling circuit, we study the quantum fluctuations of charge and current of the
mesoscopic capacitance coupling circuit in a displaced squeezed Fock state. It
is found that the quantum fluctuations of charge and current in each component
circuit depend on the devices of two circuits and the squeezing parameters, while
the fluctuations do not depend on displacement parameters.

1. INTRODUCTION

With the progress in nanotechnology and microelectronics, the trend in
the miniaturization of integrated circuits and devices toward atomic-scale
dimensions becomes stronger. When the transport dimension reachesa charac-
teristic dimension, namely, the charge carrier inelastic coherence length,
gquantum effects must be taken into account. Louisell [1] first discussed the
gquantum effects of an LC circuit and gave its qguantum noise in the vacuum
state. This problem has become of interest due to the development of meso-
scopic physics [2, 3] and its importance in future quantum computers [4].
Recently, the quantum fluctuations of a nondissipative mesoscopic capaci-
tance coupling circuit in sgueezed vacuum states have been investigated
[5, 6]. In this paper, the quantum fluctuations of charge and current of a
nondissipative mesoscopic capacitance coupling circuit in a displaced
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squeezed Fock state are investigated. As the displaced squeezed Fock state
can bereduced to the vacuum state and squeezed vacuum state, thefluctuations
of the mesoscopic capacitance coupling circuit discussed before are are specia
case of our general results. Therefore, it is more general and significant to
study the quantum fluctuations of charge and current in displaced squeezed
Fock states.

2. QUANTUM FLUCTUATIONS OF A MESOSCOPIC
CAPACITANCE COUPLING CIRCUIT IN A DISPLACED
SQUEEZED FOCK STATE

For two nondissipative LC circuits coupled via a capacitance in the
presence of a source &(t) in one of two circuits (see Fig. 1), the classical
equations of motion, as a consequence of Kirchhoff’s law, read
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where q(t) (henceforth we do not indicate the subscript k = 1, 2) are the
charges of the two circuits, C, and L, stand for the capacitance and inductance
of each component circuit, respectively, and C is the coupling capacitance
between the two circuits. When ¢(t) = 0, Egs. (1) take the simple Hamil-
ton form
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Fig. 1. Nondissipative capacitance coupling circuit.
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from the factors L,) the electric currents instead of the conventional
“momenta.” According to the standard quantization principle, one associates
with each of two observable quantities g, and py linear Hermitian operators, ¢
and P, satisfy the commutation relation [, p] = i%. Thus the nondissipative
capacitance coupling circuit can be quantized. We use the following transfor-
mations [6] for the charge and current in the quantized Hamiltonian,
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Then the quantized Hamiltonian of the system can be written as
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It is clear that Eq. (6) is the sum of the Hamiltonians of two independent
guantum harmonic oscillators whose frequencies are, respectively,

where

w1 = (o/ VLl v, wy = (B/VLiL v ©)
Thus we get the energies and eigenvectors of the system when &(t) = 0,
Eﬂl,ﬂz = (nl + 1/2);1/(01 + (nZ + 1/2)h(x)2 (10)

Wnpr = M| ® ), (M, =0,1,2..) (12)
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where |n,) and |n,) represent the eigenvectors of oscillators with frequencies
w; and w,, respectively. We introduce the creation and annihilation operators
for the two independent oscillators

a;: ("~)k\/|—1|—2:u2 q/_ l pr
2k k o /—LlL2 k |

1/2 .
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From [, pd = i%, we have [a, ] = 1. Then we get
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For the commutation relations [ay, a;] = 1, we can define the vacuum
state and Fock states. We assume the capacitance coupling circuit is in a
displaced sgueezed Fock state [7-9]:

|1, &1, Ni; 2, E2, ) = |20, &1, M) © |25, &, )
= D(z)S(£1)|n) ® D(z)(E2) | (14)

where D(z) and S&) are the displacement operator and sgueezing opera
tor, respectively:

D(z) = exp(zal — Za),  S&) = expGéal’ — 1&ad)  (15)

Here z = [z/€% (|| > 0, 0 = 6, < 2m) are the displacement parameters
and & = [&]€ (|&] > 0, 0 = ¢y < 2m) the squeezing parameters. Using
the formula

~ ~ ~ 2 ~ ~ ~
e¥Be M = B + \A, B] + % A [A B]] + - (16)

we can easily prove the following relations:
D*(z)aD(z) = ax + z,  D*'(z2daD(z) = a + % 17)
S'(EdaS(E) = ax coshl&| + ace® sinh[g (18)
S'(&ac (&) = ad coshlé + ae* sinhjg (19)
From Egs. (13) and (17)—(19), we obtain
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where
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Therefore, the mean values and mean-square values of g’ and p,’ in the state
given by Eg. (14) can be obtained, respectively, as
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Then, using Egs. (3), (4) and (26)—(28), we get the mean values and mean-
square values of the charge and current of the capacitance coupling circuit
in the state given by Eq. (14). They are, respectively,
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+ oy |E(&)[A2n, + 1) — F4(2)] coszg

+ Jwiw,F(z)F(2) sin ¢} (36)

From the above equations, we can see that the mean values for both the
charge and current only depend on the displacement parameters z,, while the
mean-square values are dependent on both the displacement parameters z,
and squeezing parameters &,. Then the quantum fluctuations of charge and
current for the capacitance coupling circuit in the displaced squeezed Fock
state are

(Aqy)?» = %Lll [wil IAED 22N, + 1) cosz%

+ L |Ag)en, + 1) s g] (37)
w2

(Aqp)?) = %le [wil IAED 220, + 1) sjnzg
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+ w,|E(&,)[2(2n, + 1) cos? g] (40)

where ¢, oy, A(&), and E(&) are given by Egs. (5), (9), (22), and (23),
respectively. From the results we find that there exist quantum fluctuations
for both charge and current in each circuit, and the fluctuations do not depend
on the displacement parameters z,. The magnitude of the fluctuations is not
only related to the device and the squeezed parameters &, , but isal so associated
with the other circuit and the magnitude of the coupling capacitance. There-
fore, the quantum fluctuations of the charge and current in each component
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circuit are interrelated. In particular, when n, and the parameters z, and &
take specia values, the quantum fluctuations corresponding to special states
can be obtained. For example, when z, = 0 and n, = 0, the quantum fluctua-
tions of charge and current in the squeezed vacuum state are, respectively,

ap - AL | Enerost + et | @
ap - AL | Enersrd+ Linerost| @
(a2 =2 Ll[wﬂE(el)P cos? - + waE(E;)? sin ﬂ (43)
(p) =2 Lz[mﬂE(el)P Sin? 2+ w,|E(E) coszg] (44)

In the same way, from Egs. (37)—(40), the quantum fluctuations of charge
and current are obtained easily, respectively, in the squeezed Fock state (z, =
0), squeezed state (n, = 0), displaced Fock state (£, = 0), coherent state (&
= 0 and n, = 0), Fock state (z, = 0 and & = 0), and vacuum state (z, =
0, & = 0, and n, = 0). These special states can be regarded as special cases
of the displaced squeezed Fock state when n, and the parameters z, and &
take corresponding special values. Therefore, itismoregeneral and significant
to study the quantum fluctuations of charge and current in displaced squeezed
Fock states.

3. CONCLUSION

In this paper, on the basis of the equations of motion for a capacitance
coupling circuit, we studied the quantum fluctuations of the charge and current
of a nondissipative mesoscopic capacitance coupling circuit in a displaced
squeezed Fock state. The quantum fluctuations are not only related to the
device and the sgueezed parameters, but also to the other circuit and the
magnitude of the coupling capacitance. As the displaced squeezed Fock state
can be reduced to the vacuum state and squeezed vacuum state, the previously
discussed fluctuations of the mesoscopic capacitance coupling circuit are
special cases of our genera results. Therefore, it is more general and signifi-
cant to study the quantum fluctuations of charge and current in displaced
squeezed Fock states.
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